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Abstract. The influence of the Bragg diffractions on the coplanar and non-coplanar crystal
truncation rod scattering is studied using the Ewald multiwave dynamical theory of diffraction.
The resulting formulae are compared with the approximate ones of the kinematical theory and
geometrical optics approximations.

1. Introduction

The crystal surface lowers the three-dimensional translational symmetry of an ideal infinite
crystal given by the basic lattice vectors(a1,a2,a3) into a two-dimensional one, given by the
translational vectors(a1,a2). The vectorsa1,a2 are assumed to lie in the bordering surfaces
of the crystalline layer. We denote byk = k‖ + k⊥ the wave vector of the incident wave

f = Aeik·r (1.1)

and by(b1, b2) the basic vectors of the lattice reciprocal to(a1,a2), and also bye3 the unit
vector in the direction of the inner normal; see figure 1. Then the wave vectors of the waves
transmitted (K+

pq(k)) and reflected (K−pq(k)) by a crystalline layer are

K±pq(k) = k‖ + pb1 + qb2 ± e3Kpqz(k)

Kpqz(k) = +
√
k2 − |k‖ + pb1 + qb2|2

(1.2)

withp, q integers. Obviously, there are a finite number of reflected waves with realKpqz(k)and
an infinite number of non-radiative waves with pure imaginaryKpqz(k) (evanescent waves).

It has been found that, to study the geometry of the scattering, the ‘0−pq-diagrams’ [1] can
be used to advantage. We define the quantities

θ±pq(k) = a3 ·K±pq(k) (1.3)

geometrically representing the projection ofK±pq(k) to a3. The incident wave (1.1) is in the
Bragg and/or Laue diffraction position(pq`) on a crystal truncation rod, CTR,(pq), if, for
its wave vectork =K+

00 (see formula (2.9) in [1]),

θ+
00(k) = θ∓pq(k) + 2π` with ` integer (1.4)

holds, the diffraction vector beingpg1 + qg2− `g3. Here(g1, g2, g3) are the basic vectors of
the lattice reciprocal to(a1,a2,a3). We introduce

0∓pq(k) = a3 · (k −K∓pq) = θ+
00(k)− θ∓pq(k) (1.5)

0953-8984/99/305767+13$30.00 © 1999 IOP Publishing Ltd 5767



5768 O Litzman and P Mikulı́k

00
--

-1-1

||(-1,-2)

(-1,0)

(0,0)

γ

(-1,-1)

k

(1,1)

(-1,1)

(0,1)b

b

K

2

1

e3

k

K

Figure 1. A drawing of the scattering geometry used in the calculations in the following graphs.
We assume a semi-infinite crystal with a bcc lattice witha1 = a(1, 0, 0), a2 = a(0, 1, 0),
a3 = (a/2)(1, 1, 1) and a1,a2 lying in the crystal surface plane. This defines the two-
dimensional reciprocal lattice of(b1, b2); b1 ‖ a1, b2 ‖ a2, b1 = b2 = 2π/a. We choose
the tangential componentk‖ of the incident wave vector (λ/a = 0.725) as parallel to the direction
a1 + 2a2 ‖ b1 + 2b2.

where(K∓pq − k) is the scattering wave vector in a vacuum. Then the diffraction conditions
can be written as

0±pq(k) = 2π` (1.6)

where the + sign means the Laue case and− the Bragg case. This condition coincides with
the third Laue diffraction condition written in the usual notation [2]:1

2(Kpq` − k) · a3 = `π .
In most experiments the plane of incidence and the wavelength are kept constant and only the
angle of incidenceγ (measured from the inner normal to the surface) varies;k = k(γ ). Then
the positions of the Bragg anglesγ B

pq` follow directly from (1.6).
Let us demonstrate the meaning of (1.3)–(1.6) for the scattering geometry defined in

figure 1: a bcc lattice with the surface plane(a1,a2); the tangential component of the incident
wavek is parallel to the directiona1 + 2a2 ‖ b1 + 2b2. The incident wavek ≡ K+

00 excites
(among others) the specularly reflected waveK−00 = k‖ − k⊥ and the non-coplanar reflected
wave

K−−1−1 = k‖ − b1− b2 − e3

√
k2 − |k‖ − b1− b2|2.

All of the vectorsk, K−00, K
−
−1−1 depend on the angle of incidenceγ . For most angles of

incidence the wave fields ofK−00 andK−−1−1 are ‘weak’. But ifa3 · (k −K−1−1) = 2π`
(which means that0−−1−1 = θ+

00(k) − θ−−1−1(k) = 2π`; see (1.4)), then the incident wavek
fulfils the Bragg diffraction condition for CTR(−1−1) and the waveK−−1−1 is strong.

In figure 2 the0−pq-diagrams are employed to demonstrate the reflection on a bcc lattice
with the scattering geometry as in figure 1. From the diagram it follows that for the positive
angles of incidenceγ ∈ (0, 90◦) two coplanar reflections(0, 0), (−1,−2) and seven non-
coplanar reflections(0, 1), (1, 0), (1,−1), (−1,−1), (0,−2), (0,−1), (−1, 0) exist. All
other excited waves are evanescent. The inset figure demonstrates the detail close to the Bragg
angleγ B, where the total reflection occurs in the region of(γ f , γ i).

Let us for example consider the intensities of the reflected beams in the directionsK−00(k)
(specular reflection) andK−1−1(k) (non-coplanar reflection) in the gamma-diagrams0−00 and
0−−1−1 in figure 2. The regions of total reflections in these directions are near the angles
of incidenceγ B

001 andγ B1
−1−12, γ

B2
−1−12, respectively. It is clear that the total reflection of the

specularly reflected beam at the angle of incidenceγ B
001 must influence the reflectivity in the

directionK−−1−1 between the angles of incidenceγ B1
−1−12 andγ B2

−1−12, i.e. the crystal truncation
rod scattering between the two regions of the total reflection in the directionK−−1−1. Thus for
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Figure 2. Gamma-diagrams0−pq(γ ) = θ+
00−θ−pq for the sample and scattering geometry described

in figure 1. The anglesγ B
pq` are the angles of incidence (measured from the inner normal) for which

the Bragg diffraction conditions0−pq(γ B
pq`) = 2π` are satisfied. The inset figure demonstrates the

distanceηpq` = 0−pq(γ ) − 2π` > 0 determining the position (which is close toγ B
pq`) and the

width (γ i
pq` − γ f

pq`) of the Darwin plateau forQ0 > 0. ForQ0 < 0 the Darwin plateaus are in
the regionsηpq` 6 0. In the main figure the scale of the shaded Darwin plateaus could not be
preserved.

the study of the CTR scattering the two-beam approximation is not adequate, and a many-beam
treatment is required.

The conventional dynamical theory of diffraction addresses the reflectivity of the crystal
near the Bragg peaks, studying the well-known rocking curves [2–4]. Recently, the interest
in the intensity far from the Bragg peaks, i.e. the CTR scattering, has been motivated by
the fact that this region is more sensitive to the defects of the ideal crystal surface than the
regions of the rocking curves. The CTR scattering was studied by many authors by means of
both the kinematical [5–7] and the dynamical theories of diffraction, using the Laue [8, 9] or
Darwin [10,11] method.

The difficulty in computing the reflectivity far from the Bragg reflection position consists
in the fact that the Ewald sphere intersecting the origin of the reciprocal space is not close
to any other node of the reciprocal lattice. Thus the usual two-beam approximation is not
adequate; all waves corresponding to all CTRs, or at least all waves corresponding to the
nodes ‘near’ the Ewald sphere, should be considered. In other words, the CTR scattering should
be handled within the multiwave theory. But using the standard Bethe–Laue formulation of
diffraction [2,3], the contribution to the reflectivity of the individual solutions of the dispersion
relation is not clear.

The use of the mathematical formalism for Ewald’s dynamical theory of diffraction has
provided another approach to this problem. In the original version of Ewald’s theory [12,13]
the crystal was realized as a system of Hertz dipoles, situated at the crystal lattice points and
coupled via retarded electromagnetic forces, which are brought into forced vibrations by the
external electromagnetic wave. This model of the crystal is of course far from physical reality.
But Ewald’s idea can be used for the interaction of particles with point diffraction centres such
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as the interaction of neutrons with a crystal [1, 4, 14–17]. The dispersion relation, giving the
z-componentsκz of the wave vectors of the refracted waves in this theory, reads (see equation
(2.18a) in [1])

1 +QS ′(k) +
2π iQ

|a1× a2|
∑
pq

1

Kpqz

[
eiθ+

pq

eiψ − eiθ+
pq

+
e−iθ−pq

e−iψ − e−iθ−pq

]
= 0 (1.7)

whereψ = a3zκz andQ = Q0/(1 + ikQ0) is the neutron scattering length. The plane lattice
sumS ′(k) (see equation (16) in [15]) is of the order of 1/a. Thus the intensity of the reflected
waves in this formalism is given not by the distance of the reciprocal-lattice nodes from the
Ewald sphere, but by the relative positions of the polesθ±pq(k) of the dispersion relation (1.7).

This paper is structured as follows. In section 2 we introduce the algebraic formalism for
the study of the CTR scattering within the multiwave dynamical theory of diffraction whereby
we confine ourselves to a semi-infinite crystal where the formulae can be given in a simple
algebraic form. In section 3 we study the influence of the Bragg reflections on the intensity
profile of other reflections. In section 4 we compare the results from the dynamical theory of
diffraction with those from the kinematical theory and geometrical optics approximations.

2. General formulae for the reflection of neutrons by a semi-infinite crystal in the
multiwave theory

Our further considerations are based on the results of our previous papers [1,15] dealing with
the dynamical theory of diffraction of neutrons in Ewald’s conception [4,12,14].

The reflectivityR(K−pq) of a semi-infinite crystal in the direction of the wave vectorK−pq ,
equation (1.2), can be computed as follows (see equations (2.15) and (2.16) in [1]):

R(K−pq) =
∣∣R1(K

−
pq)
∣∣2 ∣∣R2(K

−
pq)
∣∣2 kz

Kpqz
(2.1)

where

R1(K
−
pq) =

eiψ+
00 − eiθ+

00

eiψ+
00 − eiθ−pq

(2.2)

R2(K
−
pq) =

∏′

(uv)6=(00)

eiψ+
uv − eiθ+

00

eiψ+
uv − eiθ−pq

eiθ+
uv − eiθ−pq

eiθ+
uv − eiθ+

00
. (2.3)

Here,ψ±uv is the solution of the dispersion relation (1.7) near the poleθ±uv. It holds that

eiψ±uv = eiθ±uv [1 + O(1/h0)] (2.4)

excluding the case wherea3zKuvz � 1. The quantity

h0 = |a1× a2|
2πa3zQ0

(2.5)

for the neutron diffraction is of order 104.
By using (2.1)–(2.3) the problem of the reflection of neutrons by a semi-infinite crystal

is solved exactly for any angle of incidence and any wavelength, i.e. for the CTR scattering
as well. To use them we must of course evaluate the solutionsψ+

uv of the dispersion relation
(1.7). The numerical evaluation ofψ+

uv was discussed in [1]. In this paper we shall try to find
formulae for the reflection suitable to analytical approximations.

Let us consider the expression (2.3) forR2(K
−
pq). Due to (2.4) and (2.5) it holds that

eiψ+
uv − eiθ+

00

eiψ+
uv − eiθ−pq

eiθ+
uv − eiθ−pq

eiθ+
uv − eiθ+

00
= 1 + O(1/h0). (2.6)
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Thus

R2(K
−
pq) = 1 + O(1/h0) (2.7)

excluding the cases whereθ+
00(k) − θ+

uv(k) = 0 (modulo 2π ), (uv) 6= (00) andθ−pq(k) −
θ+
uv(k) = 0 (modulo 2π ). The first exclusion is the condition for the Laue diffraction (see

(1.5)) and it will be discussed later. The second one will not be considered in this paper. Thus
we can write

R(K−pq) = R1(K
−
pq)[1 + O(1/h0)] (2.8)

R1(K
−
pq) = |R1(K

−
pq)|2

kz

Kpqz
. (2.9)

Let us now consider the solution of the dispersion relation (1.7). Let us assume that
sayθ+

00(k) andθ−mn(k) are two poles of the dispersion relation (1.7) and let us investigate the
solutionsψ+

00 andψ−mn near these poles. For this purpose let us separate in (1.7) the terms
corresponding to the polesθ+

00 andθ−mn. In this way we obtain (see (2.18c) in [1])

bo
00

eiθ+
00

eiψ − eiθ+
00

+ bo
mn

e−iθ−mn

e−iψ − e−iθ−mn
= F00,mn(ψ) (2.10)

where

bo
pq = iβpq = − i

h0a3zKpqz
. (2.11)

Equation (2.10) can formally be considered as a second-order algebraic equation for eiψ . Then
from (2.10) it follows that

eiψ = F00,mn(ψ) + [F00,mn(ψ) + bo
00 + bo

mn]e
i(θ+

00−θ−mn) ±√D00,mn(ψ)

2[F00,mn(ψ) + bo
mn]e−iθ−mn

(2.12)

where (see also (2.28) in [1])

D00,mn(ψ,k) = 4β00βmn[1− Y 2
mn(ψ,k)]e

i(θ+
00−θ−mn) (2.13)

Ymn(ψ,k) = −1

2

[√
K00z

Kmnz
+

√
Kmnz

K00z

]
cos

θ+
00− θ−mn

2

+ h0a3z

√
K00zKmnzF

(1)
00,mn(ψ) sin

θ+
00− θ−mn

2
(2.14)

and

F
(1)
00,mn = F00,mn +

i

2
(β00 + βmn). (2.15)

Using for eiψ
+
00 the value obtained from (2.12), after easy but lengthy algebraic manipulations,

from (2.2) and (2.9), we get

R1(K
−
pq) =

kz

Kpqz

∣∣∣∣∣∣
√
β00βmn

[
Ymn(ψ

+
00,k)∓

√
Y 2
mn(ψ

+
00,k)− 1

]
sinX + β00 sinY

2F (1)00,mn(ψ
+
00) sinY sinX + β00 sinY cosX + βmn cosY sinX

∣∣∣∣∣∣
2

(2.16)

where

X = 0−pq
2

Y = θ−pq − θ−mn
2
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and whereY ∓ √Y 2 − 1 = Y − sgn(Y )
√
Y 2 − 1. Using formula (2.16) we can study the

influence of the total reflection in one directionK−mn (e.g.K−−10 in figure 2) on the reflectivity
profile in another directionK−pq (e.g.(−1−1)). Putting(mn) = (pq) in (2.16) we get the
formula

R1(K
−
pq) =

[
Ypq(ψ

+
00,k)∓

√
Y 2
pq(ψ

+
00,k)− 1

]2
(2.17)

which has already been studied; see equation (3.3) in [1].

3. The influence of the Bragg reflections on the crystal truncation rod scattering

The formulae (2.16) and (2.17) for the evaluation of the reflectivityR1(K
−
pq) in the direction

K−pq are exact the choice ofθ−mn in (2.16) being arbitrary. They of course contain the term

F
(1)
00,mn(ψ

+
00) (see (2.14)) depending on the solution of the dispersion relation (2.10).

The advantage of formulae (2.14), (2.16) and (2.17) consists in the properties of the
functionF (1)00,mn(ψ) given in (2.26a)–(2.26d) in [1], i.e.

F
(1)
00,mn(ψ) = 1 +φ00,mn(ψ) (3.1)

the functionφ00,mn(ψ) having poles for (see (1.7) and the right-hand side of (2.10))

ψ =
{
θ+
uv(k) except for(uv) = (00)

θ−uv(k) except for(uv) = (mn). (3.2)

Outside these poles,

φ00,mn(ψ) = O(1/h0). (3.3)

Thus, outside the poles (3.2) of the functionF (1)00,mn(ψ), equation (2.14) yields

Ymn(ψ,k) = Ymn(k) [1 + O(1/h0)] (3.4)

where

Ymn(k) = −1

2

[√
K00z

Kmnz
+

√
Kmnz

K00z

]
cos

θ+
00− θ−mn

2
+ h0a3z

√
K00zKmnz sin

θ+
00− θ−mn

2
. (3.5)

Let us note that theYmn(k) only depends on the given ‘geometrical parameters’K00(k),
Kmn(k), θ+

00(k), θ
−
mn(k); it does not depend on the solutions of the dispersion relation (2.10).

Let us now consider (2.16) for the case where the incident wave is far from any Bragg or
Laue diffraction position; thusθ+

00(k) (see (1.4)) is far from any poles of the functionF (1)00,mn(ψ)

(3.1) and the same holds due to (2.4) forψ+
00. Then

F
(1)
00,mn(ψ

+
00) = 1 + O(1/h0) Ymn(ψ

+
00,k)∓

√
Y 2
mn(ψ

+
00,k)− 1= O(1/h0) (3.6)

and (2.16) reads

R1(K
−
pq) =

∣∣∣∣∣ β00 sin((θ−pq − θ−mn)/2) + O(1/h2
0)

2 sin((θ−pq − θ−mn)/2) sin(0−pq/2) + O(1/h0)

∣∣∣∣∣
2
kz

Kpqz

= 1 + O(1/h0)

4h2
0a

2
3zK00zKpqz sin2(0−pq/2)

. (3.7)

To show the influence of the Bragg diffraction positions, i.e. of the polesθ−mn, on the
neutron scattering, let us apply formula (2.16) to say the non-coplanar reflection along CTR
(pq) = (−1−1), i.e. in the direction of the vectorK−−1−1; see the profile of0−−1−1 in figure 2.
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To avoid the poles of the functionsYmn(ψ+
00,k) and F (1)00,mn(ψ

+
00), we shall use the same

(pq) = (−1−1) and different(mn) in (2.16). In the following we shall study two cases.
In case A we shall obtain a formula forR1(K

−
−1−1) valid only outside the regions of the angles

of incidenceγ B
001, γ

B
−101 andγ B

000. A formula valid around the angle of incidenceγ B
−101 is

considered in case B.

3.1. Case A.(mn) = (pq) = (−1,−1)

In this case we use the exact formula for the reflectivity (2.17):

R1(K
−
−1−1) =

∣∣∣Y−1−1(ψ
+
00,k)∓

√
Y 2
−1−1(ψ

+
00,k)− 1

∣∣∣2. (3.8)

However, the approximation (3.5) forY−1−1(ψ
+
00,k) is justified only if the solutionψ+

00
.= θ+

00

lies outside the poles of the functionF (1)00,−1−1(ψ), i.e. if θ+
00(k) is far (modulo 2π ) from the

poles

θ+
uv(k), (uv) 6= (00) and θ−uv(k), (uv) 6= (−1,−1). (3.9)

In other words we must avoid the angles of incidenceγ where the conditions for any Laue or
Bragg diffraction different from the directionK−−1−1 are satisfied. Under these limitations we
can write

R1(K
−
−1−1) =

∣∣∣∣Y−1−1(k)∓
√
Y 2
−1−1(k)− 1

∣∣∣∣2 [1 + O(1/h0)]. (3.10)

The plot of (3.10) is given in figure 3. A plateau of the total reflection appears nearγ B1
−1−12 and

γ B2
−1−12, whereY 2

−1−1(k) < 1. The regions of the total reflection were discussed in [1,16,17].
Far from these regions the second term on the right-hand side of (3.5) is very large and, similar
to (3.7), we obtain

R1(K
−
−1−1) =

1 + O(1/h0)

4h2
0a

2
3zK00zK−1−1z sin2(0−−1−1/2)

. (3.11)

We eliminate the casesK00z = 0 andK−1−1z = 0 when the incident or reflected beams lie too
close to the surface.

The approximation (3.10) does not hold close toγ B
001, γ

B
−101 andγ B

000 (see figure 3), where
the case B formulae have to be used instead.

Pinsker [3], p 267, gives for the reflection coefficient of a semi-infinite crystal a formula
similar to our equation (2.17):

RB =
∣∣∣∣ χhχ−h

∣∣∣∣ ∣∣∣y ±√y2 − 1
∣∣∣2 (3.12)

where the quantityy differs from ourYmn (2.14). Formula (3.12) is valid only for the coplanar
diffraction near the Bragg peak whereas (2.17) is valid for both coplanar and non-coplanar
reflections and for any angle of incidence. A more detailed discussion can be found in [1].

3.2. Case B.(pq) = (−1,−1) and(mn) = (−10)

Let us now consider the reflectivityR1(K
−
−1−1) in the neighbourhood of the angle of incidence

γ B
−101where the condition for the Bragg reflection in the directionK−−10 is satisfied (see figure 2),

i.e. where

θ+
00(k) = θ−−10(k) + 2π` + η−101(k) |η−101(k)| � 1. (3.13)
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Figure 3. The reflectivities for the same parameters as in figure 1 in the approximation
F
(1)
00,mn(ψ

+
00) = 1. The top graph shows the specular reflectionR1(K

−
00) = |Y00(k) ∓√

Y 2
00(k)− 1|2, the bottom graph plots the non-coplanar reflectionR1(K

−
−1−1) = |Y−1−1(k) ∓√

Y 2
−1−1(k)− 1|2; see equation (3.10). Vertical dotted lines nearγ B

pq` indicate the regions ofγ

where this approximation is not valid. In the scale of the figure the plots cannot be distinguished
from the kinematical approximationsRkin(K−pq) = [4h2

0a
2
3zK00zKpqz sin2(0−pq/2)]−1, equation

(4.3). The dotted curve in the upper graph is the reflectivityRgeom(K−00) = [2h0a
2
3zk

2
z ]−2 using

the classical Fresnel formulae (4.8). The inset figures show the plateaus of the total reflection at
the Bragg diffraction positionγ B

001 and total external reflectionγ B
000.

In this case,ψ+
00 is nearθ−−10 and the approximation forF (1)00,−1−1(ψ

+
00) = 1 + O(1/h0) used in

the derivation of (3.10) does not hold. In this case, to avoid the poleθ−−10 nearψ+
00, we use in

(2.16)(mn) = (−10).
By choosing(pq) = (−1,−1) and(mn) = (−10) we get

R1(K
−
−1−1) =

kz

K−1−1z

∣∣∣∣∣∣∣
√
β00β−10

[
Y−10(ψ

+
00,k)∓

√
Y 2
−10(ψ

+
00,k)− 1

]
sinW + β00 sinZ

2F (1)00,−10(ψ
+
00) sinZ sinW + O(1/h0)

∣∣∣∣∣∣∣
2

(3.14)

where

W = 0−−1−1

2
Z = θ−−1−1− θ−−10

2
For the evaluation ofY−10(ψ

+
00,k) we needF00,−10(ψ

+
00). Asψ+

00 is nearθ+
00 andθ−−10, it lies

outside the poles ofF00,−10(ψ) and the approximationF00,−10(ψ
+
00) = 1 + O(1/h0) is again

valid. We get

R1(K
−
−1−1) =

(∣∣∣∣∣
√
K00z

K−10z

Y−10(k)∓
√
Y 2
−10(k)− 1

sinZ
+

1

sinW

∣∣∣∣∣
2/
(4h2

0a
2
3zK−1−1zK00z)

)
× [1 + O(1/h0)]. (3.15)
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Nearγ B
−101, equation (3.13) holds; thus,

sin
θ−−1−1− θ−−10

2
= (−1)`+1 sin

θ+
00− θ−−1−1

2

[
1 + O

(
η−101cotan

θ−00− θ−−1−1

2

)]
. (3.16)

Thus, nearγ B
−101, equation (3.15) reads (in our case` = 1)

R1(K
−
−1−1) =

∣∣∣√K00z/K−10z

[
Y−10(k)∓

√
Y 2
−10(k)− 1

]
+ 1
∣∣∣2

4h2
0a

2
3zK00zK−1−1z sin2(0−−1−1/2)

[1 + O(1/h0)]. (3.17)

In the region of the total reflection nearγ B
−101 it holds thatY−10(k) ∈ [−1, 1], i.e.R1(K

−
−1−1)

has its values in the interval∣∣∣∣∣1±
√
K00z

K−10z

∣∣∣∣∣
2

1 + O(1/h0)

4h2
0a

2
3zK00zK−1−1z sin2(0−−1−1/2)

. (3.18)

We can see that the influence of the total reflection in the directionK−−10 on the reflectivity
R1(K

−
−1−1) is near the angleγ B

−101 considerable. But far from this region, the term

Y−10(k)±
√
Y 2
−10(k)− 1

in (3.17) is of the order of 1/h0. Thus, far fromγ B
−101 it holds that

R1(K
−
−1−1) =

1 + O(1/h0)

4h2
0a

2
3zK00zK−1−1z sin2(0−−1−1/2)

(3.19)

which is the same limit as in (3.7) and (3.11). By applying this restriction we exclude again the
cases whereK00z = 0 andK−1−1z = 0 (the beginning and end of the reflection plotK−−1−10).

The reflectivityR1(K
−
−1−1) near γ B

001—see figure 4(b)—and the specular reflectivity
R1(K

−
00) nearγ B1

−1−12, γ
B2
−1−12 andγ B

−101, can be studied in the same way.
Generally, near the Bragg angleγ B

mn`, where the Bragg diffraction condition in the direction
K−mn 6=K−pq is satisfied, we get from (2.16)

R1(K
−
pq) =

∣∣∣(−1)`+1
√
K00z/Kmnz

[
Ymn(k)∓

√
Y 2
mn(k)− 1

]
+ 1
∣∣∣2

4h2
0a

2
3zK00zKpqz sin2(0−pq/2)

[1 + O(1/h0)]. (3.20)

In figure 4(b) we plot the non-coplanar reflectivityR1(K
−
−1−1) near the angle of the

total reflectionγ B
001 for the specular reflection, using formula (3.20) for(pq) = (−1−1),

(mn) = (00), ` = 1 (full curve) and the approximation (3.10) (dashed curve).
So far we have studied the influence of the polesθ−rs of the dispersion relation (1.7) on

the reflectivity of a semi-infinite crystal. Let us now assume thatθ+
00(k) is near a poleθ+

rs(k)

(mod 2π ), i.e. that the incident wave vectork approximately satisfies the condition (1.6) for
the Laue diffraction into the directionK+

rs(k). Analysing this case by a method similar to
the case shown above we would come to the result that the Laue diffraction position does not
influence the reflectivityR1(K

−
−1−1) given by formula (3.10).

4. Comparison with the kinematical theory and geometrical optics approximations

Let us now compare our results based on Ewald’s dynamical theory of diffraction with the
kinematical theory. In the kinematical approximation, the wave function for the reflection by
a crystalline slab of the thicknessN3a3z reads (compare with (2.1a), (2.1b) in [1])

9(r) = Aeik·r − A
N3∑
n3=0

+∞∑
n1,n2=−∞

Q
eik·|r−Rn|

|r−Rn|
eik·Rn . (4.1)
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Figure 4. The plots of the reflectivities nearγ B
001. (a) The specular reflectivityR1(K

−
00). Full

curve: R1(K
−
00) = |Y00(k) ∓

√
Y 2

00(k)− 1|2; equation (5.1). Dashed curve:Rkin(K−00) =
[4h2

0a
2
3zk

2
z sin2(a3zkz)]−1, equation (4.4). (b) The non-coplanar reflectivityR1(K

−
−1−1).

Full curve: R1(K
−
−1−1) = |Y00(k)∓

√
Y 2

00(k)− 1 + 1|2/[4h2
0a

2
3zK00zK−1−1z sin2(0−−1−1/2)];

equation (3.20) for(pq) = (−1−1), (mn) = (00), ` = 1. Dashed curve: the approximation

R1(K
−
−1−1) = |Y−1−1(k)∓

√
Y 2
−1−1(k)− 1|2; equation (3.10).

Using the formula derived in [15] for the plane sum over(n1, n2) we get

9(r) = Aeik·r +A
2πQia3z

|a1× a2|
∑
uv

eiθ−uv

a3zKuvz

1− ei(N3+1)(k·a3−θ−uv)

eiθ+
00 − eiθ−uv

eiK−uv ·r. (4.2)

The transition from a thick crystal to a semi-infinite one can be performed by introducing
a small absorption. Then the wave vector in the crystal has a small imaginary part which
smooths the rapidly oscillating term in (4.2) and we get

Rkin(K−pq) =
1

4h2
0a

2
3zK00zKpqz sin2(0−pq/2)

(4.3)

whereQ ≈ Q0 was used. The specular reflectivity is given explicitly by

Rkin(K−00) =
1

4h2
0a

2
3zk

2
z sin2 a3zkz

(4.4)

and it is plotted in figure 3. Comparing (4.3) with (3.7), (3.11) and (3.19), we can conclude
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that, in the regions far from any Bragg peaks, the kinematical theory of diffraction yields results
which are very close to the dynamical theory of diffraction.

In thegeometrical opticsapproximation, the slab is considered as a homogeneous medium.
The optical potential, representing the effective interaction of the neutron with the medium,
is [4]

V0 = h̄2

ma2
3z

1

h0
(4.5)

wherem is the mass of the neutron. There is only one wave that is reflected and only one wave
that is refracted. For thez-component of the refracted wave,

κ0
z =

√
k2
z −

2

a2
3zh0

(4.6)

holds. This represents the classical Snell law. The coefficient of reflection is the well-known
Fresnel coefficient of classical optics:

ζ0 =
kz − κ0

z

kz + κ0
z

= 1 + O(1/h0)

2h0(a3zkz)2
. (4.7)

Thus for the reflectivity of the specularly reflected beam we get (see figure 3)

Rgeom(K−00) = ζ 2
0 =

1 + O(1/h0)

4h2
0a

4
3zk

4
z

. (4.8)

We can compare the kinematical (4.4) and geometrical optics (4.8) formulae by evaluating
their ratio

Rkin(K−00)

Rgeom(K−00)
=
[

a3zkz

sin(a3zkz)

]2

[1 + O(1/h0)]. (4.9)

This is the well-known formula appearing in the study of the soft x-ray reflection [18, 19].
The plots of this ratio for several wavelengths, figure 5, demonstrate the limited validity of the
Fresnel formulae for the truncation rod scattering when the wavelength is comparable to the
lattice parameter.

5. Conclusions

We have studied the reflectivity of neutrons incident on an ideal semi-infinite crystal within
Ewald’s multiwave dynamical theory of diffraction. To summarize, we can say that the exact
expression for the reflectivityR(K−pq) along a crystal truncation rod(pq), equation (2.1),
is given by formulae (2.8), (2.9), (2.16) and (2.17), where theYmn(ψ) in these formulae are
given by (2.14). These expressions are exact, but to use them we need the solutionψ+

00 of the
dispersion equation (1.7). Thus several approximations have been derived, which eliminate
the need for evaluatingψ+

00.
Firstly, outside the regions close to the Bragg anglesγ B

mn`, (mn) 6= (pq), it holds that (see
equation (3.10))

R1(K
−
pq) =

∣∣∣Ypq(k)∓√Y 2
pq(k)− 1

∣∣∣2[1 + O(1/h0)] (5.1)

where the functionYpq(k), equation (3.5), is independent ofψ+
00.
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Figure 5. The ratioRkin(K−00)/Rgeom(K−00) = [a3zkz/sin(a3zkz)]2, wherea3zkz = (πa/λ) cosγ
(see equation (4.9)), for several wavelengths. The Fresnel formulae can be applied in regions where
the ratio is close to 1 for a givenλ/a.

Secondly, near the Bragg angleγ B
mn`, where the Bragg diffraction in the direction of

K−mn 6=K−pq appears, the approximation (5.1) should be replaced by (see (3.20))

R1(K
−
pq) =

∣∣∣(−1)`+1
√
K00z/Kmnz

[
Ymn(k)∓

√
Y 2
mn(k)− 1

]
+ 1
∣∣∣2

4h2
0a

2
3zK00zKpqz sin2(0−pq/2)

[1 + O(1/h0)]. (5.2)

Outside the regions of the Bragg diffraction positionsγ B
uv` in any directionK−uv, both

formulae (5.1), (5.2) converge to (3.7):

R1(K
−
pq) =

1 + O(1/h0)

4h2
0a

2
3zK00zKpqz sin2(0−pq/2)

. (5.3)

Formula (5.3) agrees very well with the kinematical formula (4.3).
In the approximation of the geometrical optics the crystal is considered as a homogeneous

medium characterized by the optical potential (4.5). The reflectivity for the specular reflection
is given byRgeom(K−00), equation (4.8). For the ratioRkin(K−00)/Rgeom(K−00) a simple relation
(4.9) holds.

In figure 3 we show the plots of the reflectivitiesR1(K
−
00) andR1(K

−
−1−1) in the approx-

imation (5.1). In figure 4(a) we give the detail ofR1(K
−
00), equation (5.1), in the region

of the total reflection together with the kinematical approximation (5.3). In figure 4(b) we
show the influence of the total reflection in the directionK−00 around the Bragg angleγ B

001
on the reflectivityR1(K

−
−1−1) by applying (5.2) with(pq) = (−1−1) and (mn) = (00).

The approximation (5.1) in this region is also demonstrated. Figure 5 demonstrates a simple
relationship between the kinematical theory and geometrical optics approximation for several
wavelengths.

Special attention should be paid to the regions where our formulae diverge—that is, to the
regions close to the start and end points of the reflection curve forK−pq .

The approach presented here could be used to analyse the analytical approximate formulae
for the case where three (or more) poles of the dispersion relation (1.7) coincide, i.e. when the
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Ewald sphere intersects three (or more) nodes of the three-dimensional reciprocal lattice. In
this case it would be necessary to shift the appropriate poles from right to left in (2.10).

Finally, let us note that the truncation rod scattering was studied in [11] using the Darwin
procedure. It can be shown that formula (2.25) in [11] comports with our results. An application
to the coplanar three-beam case leads in [11] to a cubic equation; thus analytical comparison
with our results seems to be very difficult. But the plot of the reflectivity in figure 9 in [11]
seems to be very similar to our figure 4(b) based on formulae (5.2).
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[1] Litzman O, Mikuĺık P and Dub P 1996J. Phys.: Condens. Matter8 4709
[2] Zachariasen W H 1946Theory of X-ray Diffraction in Crystals(New York: Wiley)
[3] Pinsker Z G 1978Dynamical Scattering of X-Rays in Crystals(Berlin: Springer)
[4] Sears V F 1989Neutron Optics(Oxford: Oxford University Press)
[5] Andrews R S and Cowley R A 1985J. Phys. C: Solid State Phys.186427
[6] Robinson I K 1986Phys. Rev.B 333830
[7] Usta K A, Dosch H and Peisl J 1990Z. Phys.B 79404
[8] Colella R 1991Phys. Rev.B 4313 827
[9] Caticha A 1993Phys. Rev.B 4776

[10] Caticha A 1994Phys. Rev.B 4933
[11] Takahashi T and Nakatani S 1995Surf. Sci.326347
[12] Ewald P P 1916Ann. Phys., Lpz.491

Ewald P P 1917Ann. Phys., Lpz.54519
Ewald P P 1932Ann. Inst. H Poincaŕe II 8 79
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